Secure Computing Workshop:
Group 2 Brief-out
Scenario – Sensor Fusion

- Controlled sharing
- Key component - MLS combat device
- SCI to unclassified
- A1 criteria
 - Formal policy model - MLS
 - Formal specification
 - Build system that is reliable
 - Hardware mechanism – information hiding and layering
 - Configuration Management of tools
 - Assumption – design is right (kernels, hardware)
Threats

- **Subversion of the infrastructure**
 - Computers – any software or hardware that is part of the infrastructure
 - E.g. life cycle attacks, creation of hardware, distribution of software
 - Separation of concerns
 - Hardware
 - Low level software
 - Firmware

- **Operational Attacks**
 - Active and passive communication attacks
 - Direct attacks – information leakage
 - Wire taps,
 - Communication interference – denial of service
 - Information leakage
 - Jamming communication

- **Integrity attacks**

- **Overrun**
 - Physically taking the combat device and masquerading as friendly device
 - How do we detect this?
 - Reverse engineering – software and hardware
 - Is it possible and non-fatal? How?

- **Design/device loss/theft**
Hard Problems

- Secure hardware abstraction layer
- Trusted Multilevel display interface
- Assured Tool Chain for Trusted Development and Management of HW and low level SW

- Key management – secure (re)generation and storage of keys
- Computing through encryption
- What trusted components do we need so we can build secure devices with a mix of trusted and untrusted components?

- MLS SAN support
- Trusted Dynamic Reconfiguration for fault tolerance and audit
Secure Abstraction Layer

- **Problem:** Define a HW/FW interface that is rich enough to support “full featured” secure operating systems

- **Property:** Software can only access hardware through the abstraction layer
- **Set of primitives to build secure software on the hardware**
- **Need for abstraction layer between hardware components**
Secure Abstraction Layer: Research Status

- Past experiences with evaluating secure systems have identified candidates

- Related Work
 - Phoenix Security Services
 - Intel
 - Alpha PAL code
 - TPM

- All the above are insufficient to support layering, information hiding, MLS services e.g. memory management, support for sharing
Secure Abstraction Layer: Measuring Effectiveness

- Build A1 requirements
- Support for full OS functionality
- Performance – speed, energy, power, etc.
Tool Chains

- **Need:** Assured tool chains for developing trusted systems

- **Example tool chain:**
 - SW: compilers, loaders
 - Hardware: HDL synthesis tools – behavioral, logic, physical design

- **Problem:** How should tool chains be designed/implemented so that they can be certified and their products (HW and SW) are trustworthy

- **Hardest Problem:** Assured tools that work together
Tool Chains

- **Current work**
 - Hardware: none?
 - Software
 - Loaders that encrypt
 - Runtime checks, e.g. stack guard

- **Why Now**
 - Reach
 - Convert design community

- **Measures**
 - Use of tools and concepts – related to performance and acceptance
 - Verification tools
MLS Window Support

Problem: Provide support for window system that
- Provides highly intuitive, visible labeling for windows
- Secure cut and paste
- Presents a standard interface for commercial software

Research Status
- Compartmented Mode Workstation - not a success
- Trusted X - never finished, but a promising approach
- Padilla & Mayer (sp?) - identified useful HW features
- Karger - suggested VMM for the display

Measures of Success
- Support for commercial software
- Some usability metric (Marine test)
- Bandwidth of remaining covert channels