Trustworthy Commodity Computation and Communication
Enables dynamic, "transient trust" security policies for achieving the appropriate availability of highly sensitive information during emergencies in the face of determined adversaries.

- Research goal: Worked example of architectural foundation for trustworthy commodity mobile devices
 - Multi-use, multi-context operations
- Approach: Clean-slate, HW/SW co-design
 - Clean-slate design allows “break-through” ideas
 - Secure-by-design architecture via tight integration
- Design goal: Security with performance, low cost and usability
 - New least privilege separation-kernel and trusted services software to enforce MAC and securely manage resources

Accomplishments
- Concept of operation
 - Multilevel-secure (MLS) multi-use handheld device
 - Different functional contexts correspond to different user roles:
 - Everyday and emergency
 - Normal or trusted
 - Support inter-context secure sharing of information
- Trustworthy security architecture that can support dynamic security policies and services
 - Core building blocks
 - Security-aware processor extensions
 - Least privilege separation kernel
 - Trusted security services
 - Secure operating-system services
 - Trusted path application

SecureCore Software Architecture
<table>
<thead>
<tr>
<th>Layer</th>
<th>Functions and Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPA</td>
<td>Trusted Path interface to security-critical services</td>
</tr>
<tr>
<td>SecureCore Operating System</td>
<td>Application Management, Identification and Authentication, Operating System Services</td>
</tr>
<tr>
<td>SecureCore Security Services</td>
<td>MLS Support and Interpretation, Resource Virtualization, Object Management, Focus Management, Trusted Channel Management, Inter-Partition Flooding</td>
</tr>
<tr>
<td>LPSK</td>
<td>Partitioning of Resources, Resource Management, IAC Enforcement, Partitioning Scheduling, Cross-Partition and Inter-Process Communication</td>
</tr>
</tbody>
</table>

Concept of Operation
- Normal Data
 - Multi-use
 - Identification
- Fast Responder Data
 - Focus
 - Emergency
- Medical Data
 - Review
 - Authorize
- Government Data
 - Private
 - Authorized

SecureCore Hardware Architecture
- User-mode: enables controlled and secure access to user's secrets
- Authority mode: enables transient, policy-controlled access to third-party protected information, remotely
- Reduced mode: for use in low power applications

Contributing Members
(alphabetically ordered)
- Ganesha Bhaskara*
- Paul Clark*
- Timothy Levin*
- Thuy Nguyen*
- Mark Orwat*
- David Shifflett*
- Timothy Vidas*